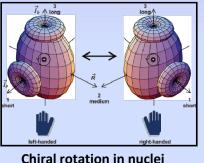
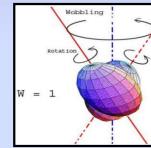
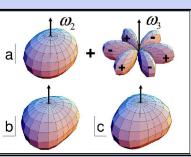
DURGA Facility at DHRUVA Reactor

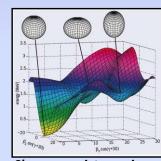

A unique facility in the country for prompt gamma coincidence spectroscopy using thermal neutron beam


Physics to be addressed:

Fission Fragment Spectroscopy:

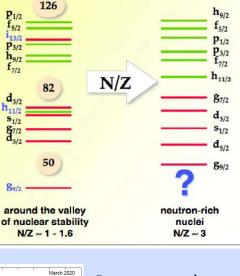

1. Evolution of nuclear shell structure in neutron-rich nuclei, new magic numbers.

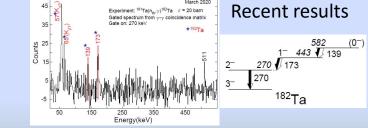
2. Exotic nuclear phenomena, such as, nuclear triaxiality, stable octupole deformation (pear-shaped nucleus), nuclear chirality, shape-coexistence, wobbling mode of excitations etc.



Wobbling excitation in nuclei

Octupole phonon **Condensation in nuclei**




Shape-coexistence in

3. Nuclear isomers in nuclei with higher neutron to proton ratio and their implications.

Capture Gamma Spectroscopy (n, γ) :

1. Low-lying excited states of deformed nuclei; quadrupole vibrations superimposed on rotation (β and γ vibrations).

2. Search for multi-phonon vibrational states; The existence of collective two-phonon vibrations ($\beta\beta$, $\beta\gamma$, and $\gamma\gamma$) has been an open question.

3. Low-lying $K^{\pi} = 0^+$ excited band structures in deformed nuclei.

