Power Reactor Thoria Reprocessing Facility (PRTRF)

- Salient features
 - Solvent: 5% TBP/dodecane for extraction
 - (Higher Fissile Content)
 - High ^{232}U content calls for new design philosophy for Reconversion
 - (Reconversion in shielded alpha tight facilities)

Feed Composition
- $\text{Th} = 200 \text{ g/L}$
- $^{233}\text{U} = 2.35 \text{ g/L}$
- FPs = 50 CI/L
- $^{232}\text{U} \sim 500 \text{ ppm}$

Product specification
- $\text{Th} = 100-200 \text{ ppm}$
- $^{232}\text{U} \sim 500 \text{ ppm}$
- FPs = 0.25 mCi/g
- Met. Imp. <3000 ppm
- EBC <5 ppm

Flow-sheet for ^{233}U recovery from irradiated Thoria rods in Power Reactor

- **Feed**
 - $\text{Th} = 200 \text{ g/L}, \text{U} = 4 \text{ g/L}, \text{FPs} = 40 \text{ g/L}$
 - $\text{HF} = 0.01 \text{ M}, \text{NaNO}_3 = 0.1 \text{ M}$

- **Raffinate**
 - $\text{Th} = 125 \text{ g/L}, \text{U} = 0.1 \text{ g/L}$

- **Extraction (O/A = 2:1)**
 - 5% TBP in kerosene
 - $5\text{mM NaNO}_3 (O/A = 5:1)$

- **Organic Phase**
 - $\text{U} = 1 \text{ g/L}, \text{Th} = 0.1 \text{ g/L}$

- **Striping**
 - 0.01 M $\text{HNO}_3 (O/A = 2:1)$

- **Lean TBP (Recycle)**

Purification & I/U Precipitation

Recovery of U & (Am/Pu Precipitation)