ION SOURCE CHEMISTRY DURING SIMULTANEOUS ANALYSIS OF THORIUM AND URANIUM BY THERMAL IONISATION MASS SPECTROMETRY (TIMS)

Fuel Chemistry Division
Bhabha Atomic Research Centre

Introduction

Thermal ionisation mass spectrometry (TIMS) is conventionally a single element analysis technique and requires the element to be present in the purest chemical form to achieve the ultimate in terms of precision and accuracy in isotope ratios determination. However, in many practical situations, such a condition cannot be satisfied. For example, when Th is irradiated in a nuclear reactor, 233U is produced along with other isotopes of U viz. 232U, 234U, 235U, 236U and 238U. Inspite of the separation and purification of this U from bulk of Th, there would always be small amounts of Th associated with purified fraction of U. Depending upon the separation efficiency, U/Th amount ratio in the purified U fraction would vary and this would alter the ion source chemistry occurring in the thermal ionisation source of the mass spectrometer compared to when the pure forms of U or Th are analysed by TIMS. Hence, it was of interest to study the ion source chemistry of Th and U during their simultaneous mass spectrometric analysis by TIMS.

Experimental

Different synthetic mixtures were prepared by mixing solutions of thorium nitrate and uranyl nitrate (both natural). The samples were loaded onto the sample filament of a high purity double rhenium filament assembly from the dilute HNO$_3$ medium and were subjected to TIMS analysis.

The temperature (heating current) of the ionisation filament was fixed (about 6A) by monitoring the 187Re$^+$ signal and was maintained constant throughout the analysis. The vaporisation filament was heated manually in steps upto about 5A. The various ions monitored at different temperatures of the vaporization (sample) filament were U$^+$, UO$^+$, UO$_2$$^+$, Th$^+$, ThO$^+$ and ThO$_2$.$^+$ and the corresponding m/z values were 238, 254, 270, 232, 248 and 264, respectively.

Results and Discussion

Figs. 1, 2 and 3 present the results obtained on ion source chemistry of U and Th when present together on the sample filament of a double rhenium filament assembly. It may be noted that the intensity ratios plotted in these Figures are normalized w.r.t. the amount ratio of U/Th in the
mixture. Among the various ions monitored, only U\(^+\), UO\(^+\), ThO\(^+\) were observed to have sufficient intensity and hence these were only used to compare the ion source chemistry.

Fig. 1 shows the change in U\(^+\)/ThO\(^+\) intensity ratio as a function of vaporization filament heating current. It is obvious that the intensity of U\(^+\) ion current is significantly higher than that of ThO\(^+\) in all the synthetic mixtures up to the vaporization filament heating current of about 3.5 A. Further, it is seen that when the amount of Th in the mixture increases, the intensity of U\(^+\) decreases significantly (curve C). This means that in the presence of Th, one will have to load relatively large amount of U on the filament to get sufficient ion current of U\(^+\) for precise and accurate analysis.

Fig. 2 presents the change in UO\(^+\)/ThO\(^+\) intensity ratio as a function of vaporization filament heating current. In above cases, there is a decrease in the UO\(^+\)/ThO\(^+\) intensity ratio with increasing vaporization filament heating current. Further, it is observed that UO\(^+\) intensity is quite appreciable even at vaporization filament heating current up to about 3.5 A. This suggests that the presence of Th along with U on the filament enhances the stability of UO\(^+\) compared to when pure uranium sample is used for TIMS analysis.

Fig. 3 shows the U\(^+\)/UO\(^+\) intensity ratio as a function of vaporization filament heating current. In all the cases studied, the intensities of U\(^+\) and UO\(^+\) are comparable which again shows that the presence of Th on the filament leads to stabilization of UO\(^+\) ion.

These studies indicate that the presence of large amount of Th (Th/U > 10) on the filament will degrade the precision of U isotopic analysis by monitoring U\(^+\) ions due to their poor yield. Further for Th isotopic analysis, ThO\(^+\) should be preferred to Th\(^+\) ion due to higher intensity of the oxide species. Also during the determination of \(^{232}\)U in \(^{233}\)U by TIMS, it would be interesting
to carry out the analysis using \(\text{U}^+ \) as well as \(\text{UO}^+ \) ions and this would be helpful to verify the presence/absence of isobaric interference of \(^{232}\text{Th} \) at \(^{232}\text{U} \).

Acknowledgements

The authors are thankful to Dr V.Venugopal, Head, Fuel Chemistry Division, BARC and to Sh.H.S.Kamath, Director, Nuclear Fuels Group, BARC for their constant support and encouragement.

This paper received the 2nd Prize in the category of “Isotopic Composition and Concentration(ICC-13)” presented during ISMAS Silver Jubilee Symposium on Mass Spectrometry (ISMAS-SJS-2003) held at National Institute of Oceanography, Goa, during January 27-31, 2003

About the authors ...

Dr S.K. Aggarwal is currently Head, Mass Spectrometry Section of the Fuel Chemistry Division, BARC. He received his B.Sc. (Hons.) from Guru Nanak Dev University, Amritsar, in 1972 with two Gold Medals. He joined the 16th batch of BARC Training School in 1972 and received the Homi Bhabha Award. He did his Ph.D. from Mumbai University in 1980. He is a coauthor of 300 scientific publications, which include 100 articles published in reputed journals. Dr. Aggarwal has participated in several international and national conferences and in different international intercomparison experiments. He is a specialist in the field of atomic mass spectrometry and alpha spectrometry and is interested in various mass spectrometric techniques. His other areas of interest include electrochemistry and solvent extraction. He represents India in the Executive Committee of International Mass Spectrometric Conferences. He has visited several countries in America, Europe and Australia as an expert as well as for delivering lectures. He is a recognized Ph.D. Guide of the Mumbai University.

Ms D. Alamelu obtained her M.Sc. Degree in Physics from Annamalai University. After graduating from 38th batch of Training School, BARC, she joined Mass Spectrometry Section of the Fuel Chemistry Division in 1995. Since then, she has been actively involved in the indigenous development of Time of Flight Mass Spectrometer. Her other areas of interest include thermal ionisation mass spectrometry and alpha spectrometry.

Mr R. Govindan obtained his M.Sc. in Chemistry from Annamalai University. He joined Mass Spectrometry Section of Fuel Chemistry Division, BARC, during November 2001 after working in Advanced Fuel Fabrication Facility, BARC, Tarapur for a period of 14 years. He is currently working in the field of inorganic Mass Spectrometry for precise isotopic analysis and concentration determination of elements which are important in nuclear technology. He has actively participated in the chemical characterisation of mixed oxide fuel for BWR, Tarapur. His other areas of interest include Potentiometry and Electro-analytical chemistry involving ion selective electrodes.
Mr P.G. Jaison joined Fuel Chemistry Division after graduating from 41st batch of BARC Training School in 1998. He has been actively working on the development of HPLC methods for the separation of lanthanide and actinide elements. His other fields of interest are mass spectrometry and microwave assisted digestion.

Mr P.S. Khodade is working in Mass Spectrometry Section of the Fuel Chemistry Division, BARC, since 1975 in the field of inorganic Mass Spectrometry and Alpha Spectrometry for precise isotopic analysis and concentration determination of elements which are important in nuclear technology. He is a coauthor of 50 scientific publications in various journals and symposia.

Mr A.R. Parab is working in the Mass Spectrometry Section of Fuel Chemistry Division, BARC. His scientific interest is in the area of thermal ionisation Mass Spectrometry for precise isotopic analysis of elements which are important in nuclear technology. He has more than 60 research publications in various journals and symposia.

Dr P.M. Shah is presently working in the Mass Spectrometry Section of Fuel Chemistry Division, BARC. He has been working in the area of Thermal Ionisation Mass Spectrometry since 1970 and has been involved in determining the isotopic composition and concentrations of various elements using isotope dilution thermal ionisation mass spectrometry. His other research interests include microwave digestion and alpha spectrometry.