For further details contact:

**Dr. J. V. Yakhmi**  
Associate Director, Physics Group,  
Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085, India.  
E mail: yakhmi@barc.gov.in

Published by :

**Dr. Vijai kumar**  
Associate Director, Knowledge Management Group and Head, Scientific Information Resource Division,  
Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085, India.  
E mail: vijai@barc.gov.in
Bhabha Atomic Research Centre (BARC) is celebrating its golden jubilee year during 2006-07. On 20th January, 1956, Pandit Jawaharlal Nehru formally inaugurated the Atomic Energy Establishment Trombay (AEET), which was renamed as Bhabha Atomic Research Centre (BARC) on January 22, 1967. As a premier R & D centre of the Department of Atomic Energy (DAE), BARC has a mandate to provide R & D support to the nuclear power programme, to pursue all activities related to nuclear fuel cycle, to operate research reactors for supporting neutron beam research and supplying radioisotopes for various applications, to conduct frontline basic research in physical, chemical, biological and engineering sciences all of which leading towards improving the quality of life of our people. The achievements BARC has made over the last 50 years are well known not only to the scientific community in the country but also to our people at large. Scientific achievements made by this premier research centre are well documented in various publications of DAE including the series “BARC Highlights”. During this golden jubilee year, we have made an effort to bring out some glimpses of recent research and development accomplishments in the form of 8 volumes, highlighting the following areas:

1. Nuclear Fuel Cycle
2. Physical Sciences
3. Chemical Science and Engineering
4. Materials Science and Engineering
5. Life Sciences
6. Reactor Technology and Engineering
7. Electronics, Instrumentation and Computers
8. Environmental Science and Engineering

These volumes will showcase the latest work in the aforementioned areas and will demonstrate how each of these is directed towards achieving the overall goal of using nuclear energy for the benefit of our people.

Nuclear energy programme in India has now reached a level of maturity. Today, India is self-sufficient in building nuclear power stations of 540 MWe capacities and has gained mastery over the entire fuel cycle. We are at the threshold of entering the second stage of nuclear power programme, in which a rapid growth in installed capacity is expected through the fast reactor programme. In the area of basic research in science and engineering, BARC has been maintaining a lead position both in national and international scenario. One of the strongest points of basic research in BARC lies in its capability in building sophisticated research facilities in-house. The core competence of the scientists and engineers in our centre covers a very wide range as is reflected in the 8 companion volumes getting released on the occasion of the golden jubilee year.

Nuclear Physics research is focussed on nuclear collisions at high energies and formation of hot and dense nuclear matter, study of nuclei with large spins and deformations and underlying symmetries and investigation of nuclei away from the line of stability and formation of super-heavy nuclei. The experimental programmes have been pursued at the Pelletron accelerator facilities at Mumbai and Delhi. Current research in astronomy and astrophysics are directed towards gaining an in-sight into the non-thermal processes in the Universe and also to understand the sources of high energy cosmic radiation and the processes which enable charged particles to be accelerated to energies of upto 1020 eV and beyond. Research activities in the emerging areas in atomic and molecular spectroscopy include cluster physics using supersonic molecular beam, laser spectroscopy, spectroscopy of trapped ions, single molecule spectroscopy, mass spectrometry of bio-molecules and spectroscopy of quantum solids. R & D efforts in the development of specialized optical components, devices, data acquisition and control system and instruments were also continued.

Significant contributions have been made in the development of various beamlines on synchrotron radiation sources at Raja Ramanana Center for Advanced Technology, Indore. Recently, three beamlines namely, the High Resolution Vacuum Ultra Violet (HRVUV), Photo Physics (PP), Angle Resolved Photo Electron Spectroscopy (ARPES) were established at synchrotron sources at Indus-I. The Angle
Resolved Photoelectron Spectroscopy (ARPES) beamline has been used to study photo-emission spectroscopy for probing electronic states in atoms, molecules and solid surfaces and High resolution VUV beamline, has been employed in high resolution studies in the range 700–2000 Å. The Photoabsorption Spectroscopy Study beamline is under installation and will be used for near-to-absorption edge (17–225 Å) spectrum analysis in terms of local electronic structure. Photo Electron Spectroscopy (PES) beamline will use X-rays in the energy range from 0.8 keV to 15 keV. The heart of the beamline is an indigenously developed double crystal monochromator.

BARC has developed multi-channel Raman spectrometer for analysis of microparticles, scanning monochromator for isotopic analysis and electron spectrometers meet some of the increasing demands for improved analysis of materials. An optical periscope has been specially designed for video recording of objects with a resolution of 0.7 mm in the core of Fast Breeder Test Reactor. A notable development were the room temperature operating sensors based on Te and conducting polymer thin films. BARC has made significant contributions to the development of mass spectrometric techniques in nuclear areas and has expertise in areas like HV/UHV technology, precision mechanical engineering and fabrication, magnet technology, ion optics, sensitive and stable analog and digital electronics, data systems that are important to develop sophisticated mass spectrometers such as Isotopic Ratio Mass Spectrometers (IRMS), Inductively Coupled Plasma source Mass Spectrometer (ICPMS), Quadrupole Mass Spectrometer (QMS) and double focusing mass spectrometer.

New radiation detectors and imaging systems such as X-ray diffraction, tomography, EXFAS, X-ray holography are developed at BARC for nuclear, defence and space technology applications. BARC continues research in advanced functional materials for nuclear reactors, synchrotron sources, lasers and other applications. Cylinders of high temperature superconductors have been fabricated for application in superconducting motors. Thin films and multilayer coatings have been prepared for laser resonators, optical components for synchrotrons and analytical instruments. Single crystals, glasses and glass-ceramics for nuclear particle detectors, lasers, hermetic seals and vacuum components are routinely prepared and fundamental studies on superconducting and colossal magneto resistive materials have been carried out.

In the area of electron beam technology, with a view of its wide ranging industrial applications for radiation processing like modification of bulk polymers, cross linking of plastic films, foam and cables, sterilization of medical products and food preservation, BARC has developed 500 keV to 10 MeV particle energy and 10 to 30 kW beam power Electron accelerators (DC and RF) and a 10 MeV RF linac. Gigawatt single and multi-pulse systems in strategic applications for high power microwave generation and pulsed high magnetic fields for EM welding of metal to ceramic joints are other accomplishments. Shock wave studies using ultra short lasers, development of tunable dye lasers, laser cooling of atoms in traps in 100 micro Kelvin and laser produced plasmas by resonant ionization are some of the areas intensely pursued in BARC. Besides, development of laser-based instrumentation for applications in nuclear fuel cycle and plasma torches with long lives are the other highlights in this area.

In this volume accomplishments of the last few years in the front line areas of physical sciences have been discussed.
Fundamental research in different branches of Physics, such as condensed matter, lasers, accelerators, neutron scattering, protein crystallography, high pressure physics, and nuclear physics employing sophisticated techniques is carried out with zeal at BARC. Simultaneously, there have been consistent attempts to apply the expertise gained towards indigenous development of high-tech instruments/systems and processing of new functional materials and fabrication of devices. Notable accomplishments include the development of particle accelerators, high power gas-gun, radiation detection and imaging systems, high power fast lasers, high-resolution mass spectrometers, neutron diffractometers, beamlines on synchrotron radiation sources Indus-1 and Indus-2. State-of-the-art facilities and expertise have been developed to prepare/process and characterize different materials such as ceramics, glasses, oxide semiconductors, high-Tc superconductor, etc. in the form of polycrystalline bulk, multilayer thin films and single crystals for basic as well as applied research and for device applications. The Centre also has a strong base to carry out theoretical studies and simulation work in basic as well as applied physics.

This volume of Highlights provides a summary of some of the activities in many areas of research and development in Physics at BARC, conducted during recent years. Physics-based activity is spread over many Divisions/Sections of BARC. The account of work presented here is by no means complete but only representative of the current activities. These activities are briefly described in fourteen sections. References to only a few representative publications are made at the end of each write-up so as to provide information about the contact persons to enable the prospective readers easy access to further details of the work. The write-ups have been kept brief to convey the essence of the activity and it is hoped that the contents will be useful to readers. It may also be mentioned here that the present volume primarily covers the basic research aspects of Physics-based programmes at BARC and technological spin-offs have been presented in related parallel volumes of the current series.

J.V. Yakhmi
FOREWORD
PREFACE

PARTICLE ACCELERATORS AND RELATED ACTIVITIES

1.1 500 KeV, 10KW industrial DC electron accelerator for material processing
1.2 20 MeV, 10 KW industrial RF electron Linac for material processing
1.3 3 MeV, 30 KW industrial DC electron accelerator for material processing
1.4 Development of a GW pulsed electron accelerators and their applications
1.5 Repetitively pulsed linear induction accelerator
1.6 Generation & application of pulsed high magnetic fields
1.7 Development of high current proton ECR source
1.8 Electron beam RF Linac for cargo inspection
1.9 Superconducting RF cavity development for particle accelerators
1.10 Utilization of 14-MeV neutron generator to study the neutronic behaviour of an accelerator driven sub-critical assembly

STUDIES IN HIGH PRESSURE PHYSICS

2.1 Experimental condensed matter physics:material behaviour under high pressure
2.2 Shock-wave physics related activities
2.3 Pulsed high energy density related activities.
2.4 Mechanical resilience of Single-Walled Carbon Nanotubes (SWNTs)
2.5 Structural and magnetic behaviour on Fe-filled Multi-Walled carbon Nanotubes (MWNTs)
2.6 Irreversible amorphization of negative thermal expansion materials
2.7 Structural changes in cristobalite-AlPO₄ under high pressures
2.8 Scheelite structured compounds 29
2.9 Molecular solids under high pressures 30
2.10 Development of high pressure optical absorption set-up: study on red-HgI$_2$ 31

3. **RADIATION DETECTION AND IMAGING** 33
3.1 Radiation Imaging: Advanced imaging with X-rays and neutrons 34
3.2 Neutron measurements using SSNTD technique during PFBR & AHWR shielding experiments 36
3.3 Standards and calibration 37
3.4 Measurement and simulation of fluence and dose build-up at electron storage ring INDUS-1 38
3.5 Depth dose profile measured in water with Victoreen survey meter 450P at front end 38
3.6 Al$_2$O$_3$ based phosphors for radiation detection 39
3.7 Development and fabrication of semiconductor radiation detectors 40
3.8 TLD Badges for personnel monitoring 40

4. **LASERS AND PLASMA RELATED STUDIES** 41
4.1 Intense picosecond and femtosecond Nd:glass Lasers to generate multi-megabar shocks and study intense laser matter interaction 42
4.2 Barium photoplasma studies 44
4.3 Novel scheme for spatial filtering of laser beams using saturable absorber 45
4.4 Optical nonlinearity in atomic vapour 46
4.5 Extended tunability of a binary dye-mixture laser 46
4.6 Safe and superior water and heavy water based solvents for laser dyes 47
4.7 Photo-stability of laser dyes: role of stimulated emission 47
4.8 Differential wavelength meter: an improved technique 48
4.9 Optical parametric oscillators 49
4.10 Solid state dye laser 50
4.11 Development of a Single Longitudinal Mode (SLM) dye oscillator: pre-amplifier system pumped by copper vapor laser 51
4.12 A pre-prototype digital beam profiler for Infrared Lasers 51
4.13 Kinetics of isotope-selective multi-step photoionization for laser spectroscopy and trace analysis 52
4.14 Non-linear dynamic study of arc root dynamics 53
4.15 Thermo-physical properties of thermal plasmas 54
4.16 Computational Fluid Dynamics (CFD) of thermal plasmas 54
4.17 Similarity analysis for plasma torches and jets 55
4.18 Innovative diagnostics: time resolved temperature measurement in a spray plasma jet 56
4.19 Laser cooling of atoms 56
4.20 Laser-based instruments for diameter measurement and rebound velocity measurement 57
4.21 Laser-based instrument for projectile speed measurement 58
4.22 Laser-based instrument for free surface level measurement of liquid metal 58
4.23 CCRF discharge studies and development of a 40 MHz, 5 kW RF power supply for a diffusion cooled slow flow slab type CO₂ laser 59
4.24 Operation of a helium-free TEA CO₂ laser 60

5. MATERIALS IN DEVICE APPLICATIONS 61

5.1 Laser decontamination and analysis of Zircaloy clad surface 62
5.2 Fabrication of hollow cylinders of high temperature oxide superconductors 62
5.3 Development of multilayer coatings for the resonators of chemical oxygen iodine laser 63
5.4 Achievement of ordered 3D island structures in zirconia films by stabilizing with silica 64
5.5 Engineering morphological control over thin film surface for the development of low-scatter deep ultraviolet coatings 65
5.6 Structure and function of class-B bacterial non-specific acid phosphatase of S typhimurium: Lys154 66
5.7 An ideal tool for roughness characterization: Neutron reflectometry 67
5.8 Study of magnetic nanoparticles 67
5.9 CMR/HTSC thin films and multilayers 68
5.10 Studies on MgB₂ superconductor 69
5.11 Growth of single crystals by Czochralski technique 70
5.12 B₂O₃ substituted (PbO)₅₋ₓ(SiO₂)ₓ glasses 71
5.13 Structural properties of machineable magnesium alumino-silicate glasses and their glass-ceramics 71
5.14 Interface study of lithium zinc silicate (LZS) glass-ceramics to copper and SS-321 hermetic seals 72
5.15 Some studies on Cs diffusion and corrosion in borosilicate glasses 73
5.16 Order-disorder transition in vortex matter 74
5.17 Magnetic response of superconductors 74
5.18 Magnetic semiconductors 75

6. CRYSTAL STRUCTURE AND LATTICE DYNAMICS 77
6.1 Metal clusters 78
6.2 Molecular electronics 79
6.3 Coulomb explosion in methyl iodide clusters 79
6.4 Magnetic structures in \( \text{La}_{1-x}\text{Ca}_x\text{MnO}_3 \) (\( x=0.4, 0.5, 0.6 \)) 80
6.5 Structure and interaction in protein solutions as studied by small-angle neutron scattering 81
6.6 Physics of the earth’s interior: neutron inelastic scattering lattice dynamics and molecular dynamics simulation 82
6.7 Hydrogen bonding in thiourea: diethyl oxalate complex in 2:1 ratio 83
6.8 Origin of negative thermal expansion in cubic \( \text{ZrW}_2\text{O}_8, \text{HfW}_2\text{O}_8 \) and \( \text{ZrMo}_2\text{O}_8 \) as revealed by neutron inelastic scattering at high pressures 84
6.9 Structural and magnetic properties of hexacyanometallate based molecular magnets 85
6.10 Temporal evolution of mesoscopic structure and dynamical scaling of structure factor for some non-Euclidean systems 86
6.11 Dynamics in monolayer protected metal-nano Clusters 87
6.12 Molecular Reorientation in nO.m type Liquid Crystal 88

7. THEORETICAL STUDIES AND SIMULATIONS 90
7.1 Computational physics - equation of state: Actinides 91
7.2 Shock simulation and molecular dynamics 92
7.3 Non-LTE model for radiation hydrodynamics 93
7.4 Theoretical modeling of transversely pumped pulsed dye lasers 94
7.5 Direct simulation Monte-Carlo development 94
7.6 Electronic relaxation in atomic vapour jets 94
7.7 BEST (Basic Electron-beam Simulation in Three Dimension) 95
7.8 Analysis of dynamical systems 95
7.9 Quantum simulations 96
7.10 Classical simulations: Disordered systems (liquid and amorphous) 96
7.11 Nuclear electromagnetic pulse 97
7.12 Hydrodynamic phenomena 98
PHYSICAL SCIENCES

7.13 Chaos based cryptography 99
7.14 Neutron-Gamma transport for nuclear science applications 100
7.15 Vircator modelling and simulation 101
7.16 Radiative transfer 102

8. ASTRONOMY AND ASTROPHYSICS 104
8.1 VHE astronomy and astrophysics 105
8.2 GeV astronomy and astrophysics 105
8.3 Low energy cosmic ray neutron monitor 106
8.4 Theoretical astrophysics 106
8.5 Scattering of cosmic muons transmitted through slabs of concrete, iron, lead and uranium 106

9. INSTRUMENTATION IN PHYSICAL SCIENCES 108
9.1 Design & Development of a Multichannel Spectrograph using CCD as a Detector 109
9.2 Scanning Monochromators (0.5 m) for Isotopic Analysis of Molecules such as $^{15}$N-$^{14}$N in Nitrogen Gas 109
9.3 Nuclear optical Instrument 110
9.4 Development of Thermoelectric Generators 111
9.5 Room Temperature operating Gas Sensors 112
9.6 Conducting Polymers based Sensors and Actuators 112
9.7 High Resolution Electron Spectrometer 113
9.8 New electrode design for Triode Sputter Ion Pump 114

10. MASS SPECTROMETR 115
10.1 Mass Spectrometers for RMP, Mysore 116
10.2 Thermal Ionization Mass Spectrometer TIMS 116
10.3 Quadrupole Mass Spectrometers QMS 117
10.4 Mass Spectrometers for Heavy Water Analysis 118
10.5 Mass Spectrometers for Heavy Water Board 119
10.6 Indigenously Developed Matrix assisted Laser Desorption Time of Flight Mass Spectrometry (MALDI-TOFMS) 119
10.7 Electrostatic Ion Trap 119
10.8 High Resolution Reflectron Time-of-flight Mass Spectrometer 121

11. SYNCHROTRON BEAMLINE INSTRUMENTATION 122
11.1 Angle Resolved Photoelectron Spectroscopy Beamline at Indus-1 123
11.2 Photophysics Beamline at Indus-1 123
11.3 High Resolution VUV Beamline at Indus-1 124
11.4 Development of a crystal bender for extended X-ray Absorption Fine Structure (EXAFS) beamline at Indus-II synchrotron source 125
11.5 Photo-Absorption Spectroscopy Studies beamline 126
11.6 Photo-electron Spectroscopy beamline 127

12. SPECTROSCOPIC STUDIES 128
12.1 Multicolor photoionization opto-galvanic spectroscopy of Uranium 129
12.2 Laser Induced Fluorescence Spectroscopy of Lanthanide. 129
12.3 High Resolution Laser Spectroscopy of Actinides 130
12.4 Laser Induced Fluorescence Spectroscopic Studies on Zirconium Atoms; Zirconium Oxide Molecules 131
12.5 Fourier Transform Emission Spectroscopy of the A'\Pi-X'\Sigma^+ transition in $^{74}$Ge$^{80}$Se 131
12.6 Fabrication of precision optical components 133
12.7 Interferometric testing of optical components 134
12.8 Fourier Transform Spectroscopic Studies of Atoms, Molecules and Transient Species 135
12.9 CCD-based Raman Spectrometer 135

13. STUDIES IN NUCLEAR PHYSICS 136
13.1 Fission of Super Heavy Nuclear Systems 137
13.2 Transfer followed by breakup with stable and weakly bound projectiles 137
13.3 Heavy-ion Induced Fission Fragment Mass, total Kinetic Energy and Angular Distributions 138
13.4 Measurement of Pre-fission n, p, α and GDR γ-ray Multiplicities in $^{28}$Si + $^{175}$Lu System 139
13.5 Study of Giant Dipole Resonance Built on 15.1 MeV T=1 State In $^{12}$C 140
13.6 Direct Observation of 4$^+$ To 2$^+$ Gamma Transition in $^{8}$Be 141
13.7 Enigma in Angular Momentum Gated Particle Spectrum in $^{12}$C+$^{93}$Nb Reaction 142
13.8 Anomaly in the Nuclear Charge Radii of Zr Isotopes 142
13.9 ENSTAR Detector in the Search for a New State of Nuclear Matter 143
13.10 Relativistic Heavy Ion Collisions 144
13.11 Development and Utilizations of Ion Accelerators 145
13.12 Astrophysical S$_{1/2}$(0) from $^2$H($^7$Be,$^8$B)n Reaction at E$_{cm}$ = 4.5 MeV 146
13.13 Application of Pulse Shape Discrimination in Si Detector for Fission Fragment Angular Distribution Measurements 147

14. DESIGN AND FABRICATION OF MECHANICAL ASSEMBLIES 149
14.1 Annular Parallel Plate Avalanche Counter 150
14.2 Alpha Spectrometer 151
14.3 On-line Linear Sample Changer for (TIMS) Mass Spectrometer 151