
 The additional features of SPERTS that make this tool
unique are automatic test-cases and report generation
following standard design template.

 Thus, SPERTS in not only an import substitute for highly
expensive tools like SCADE [2], but it comes with enhanced
features.

The Genesis

 SPERTS is designed to provide a programming
environment for Diverse Modular Safety Platform (DMSP),
which is a computer based configurable platform consisting of
a set of dedicated and qualified hardware and software
components for use in safety applications of nuclear power
plants (NPPs). Using SPERTS, this platform is configured and
programmed with system specific application software to build
different safety-critical systems.

 To this end, SPERTS is built to run on open-source LINUX
platform to generate code for safety applications. SPERTS has
in-built support for integrating qualified hardware modules
such as Input and Output boards through their board interface
libraries, thus enabling singleclick hardware-software
integration.

Application Development

 SPERTS facilitates development for safety-critical
applications by following the V−model of sof tware
development life-cycle (SDLC) conforming to IEC 60880 as
shown in Fig.1.

 The phases for detailed software design, coding, module
integration and testing are integrated into the automated
processes supported by SPERTS. All these features help in
making the design, development, testing, integration and
qualification of applications/systems (developed on DMSP)
easier and faster by virtue of its trustworthiness by design.

Introduction

Safe Programming Environment for Real-Time Systems
(SPERTS) is a tool, which is developed to design, implement,
and verify control systems for safety-critical applications. This
tool has been developed at Reactor Control Division, BARC.
What makes SPERTS different from conventional programming
environment supporting graphical language is its formal
(mathematical) model-based development approach.

The key features of the tool include the following.

I) An integrated development environment, which provides
a) a graphical modelling tool, b) a code generator, and c) a
simulation facility allowing developers to quickly design and
verify control systems.

ii) The code generated by SPERTS is designed to be highly
reliable, making it suitable for safety-critical applications. This
is because of a) the formal model with mathematically defined
precise semantics that is built out of the application program
(user specifications) and b) the code is generated
automatically from the requirements (user specifications as
formal model), which is correct-by-construction.

iii) It provides tools for verifying the correctness of control
systems along with the tools for testing, debugging, formal
verification and static analysis. These tools are used to ensure
that control systems meet the required safety standards and
operate as intended.

iv) SPERTS enforces adherence to Programming Guidelines
(PG) by a qualified code generator and built-in logical
constructs that are safe to use in safety critical applications.

v) It ensures deterministic response time due to
synchronous data flow constructs in the language[1].

Safety-Critical C&I Systems

SPERTS: A Tool for Development of
Safety-Critical Systems

1 1 1 1 1Suraj Mukade* , Pratibha Sawhney , Prateek Saxena , Ashutosh Kabra , Amol Wakankar ,
1 1 1 2Ajith K. J. , S. T. Sonnis , D. A. Roy and Anup Bhattacharjee

1Reactor Control Division, Bhabha Atomic Research Centre, Mumbai 400085, INDIA
2Security Electronics & Software Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, INDIA

ABSTRACT

SPERTS (Safe Programming Environment for Real-Time Systems) is an integrated
environment for development of safety-critical systems. Using SPERTS, a developer can
build a formal model of the system by specifying the user/system requirements using a
higher level graphical language suitable for safety-critical system. The SPERTS language
supports function blocks and state-machine constructs with rigorous semantics. A model
built using SPERTS i) can be formally verified, ii) helps generate code, which is correct-by-
construction and finally iii) produces a deployable code using target specific library. This
article presents the SPERTS environment focusing on the enabling techniques behind
application development, verification of requirements, validation of the safety properties
and automated code generation including test cases.

KEYWORDS: Safety-critical systems, SPERTS (Safe Programming Environment for Real-
Time Systems), Nuclear power plants (NPPs), Building blocks, Model builder

*Author for Correspondence: Suraj Mukade
E-mail: suraj@barc.gov.in

SPERTS Code Generation

January-February 2023 BARC newsletter 11

2

Research and Development

of the system i.e., development of system model by composing
the models of its sub-components.

 Each component of the model is denoted as a node. It is
possible to reuse existing nodes of the model for specifying the
other higher level nodes. SPERTS supports hierarchical state
machines, which allows the designers to easily develop
complicated applications in a modular fashion.

 The Configuration Module (CM) in the Model Builder
facilitates application specific configuration, which allows user
to add the required hardware modules, specify the fail-safe
state of each input/output, network parameter for
communication modules, cycle time of the system etc.

Code Generator (CG)

 The first step in automatic code generation involves
production of textual representation of the graphical model of
the application program. The textual model, generated by
Model Builder, is then fed to the syntax and semantic checker
module (SSC-CG) of CG, which checks the syntactic and
semantic correctness of the textual model. This is followed by
generation of an intermediate representation of the textual
model in the form of an Abstract Syntax Tree (AST).
Subsequently, it generates a target independent C program
from the AST, which is semantically equivalent to the functional
behaviour of the textual model[5,6]. The code generation
process is shown in Fig.3. This generated code is compiled
along with required dependencies (such as BSP, OS, system
libraries etc.) to produce an executable for deployment on the
target safety system.

Fig.1: V-Model of SDLC.

Fig.2: Use of SPERTS modules in SDLC.

Fig.3: SPERTS Code Generation.

Building Blocks of SPERTS

 The essential modules that constitute SPERTS to provide
an environment for building safety-critical applications using
DMSP hardware are discussed briefly in this section. The
structural relationship of the SPERTS modules, which help
realize the goal of using formal methods of software
development through high level user specification is presented
in Fig.2. In addition, conformance with the standard
development practices[3] is also ensured by design.

Model Builder (MB)

 It is a GUI based environment that facilitate building a
formal model for application logic using graphical artefacts as
well as textual specifications.

 It provides seamless integration of state machine and
data-flow equations[4] to carry out the model development of
software-based control systems and allows hierarchical model

12 BARC newsletter January-February 2023

Research and Development

Code generation for Simulation

 Simulation is essential to validate the user developed
model against any run-time logical error that may manifest. CG
module can also be configured to facilitate generation of
instrumented C code to support simulation. The instrumented
C code exposes the internal state of the application at run-time
which enables debugging and validation.

Model Simulator (MS)

 This module supports validation of the model by
simulation. Model Simulator (MS) enables debugging and
simulation of models by executing the instrumented C code. CG
module can be configured to generate instrumented C code for
both on-host and on-target simulation. The instrumented C
code makes the internal state of the application observable by
outputting inputs, outputs and internal variables of each node
of the application. The CG module for simulation also

generates the wrapper function main for compilation and
generation of executable. During the execution of the
instrumented C code, the observable information is provided to
the MS in a format agreed between CG and MS. MS module
then graphically displays the state of the application at every
instance of execution.

Design Verifier (DV)

 This module of SPERTS provides support for Formal
Verification using Model Checking technique. A Model Checker
is a tool which takes the program and the desired property as
inputs and exhaustively searches for possible violations of the
property. Note that model checking is fully automatic and
requires no human interaction. The main advantage of this
technique is that in case the program violates the property; it is
reported as the sequence of inputs which led to the violation.
This is called as the counterexample, which is an execution
trace leading to a state where the property is violated. By

Fig.5: Typical deployment scenario for C&I systems of NPPs.

Fig.4: SPERTS Design Verifier.

Fig.5: Test case generation module of SPERTS.

January-February 2023 BARC newsletter 13

Research and Development

analysing the counterexample, the source(s) of error in the
model can be found. By ensuring that the model satisfies safety
properties, we increase our confidence in the correctness of
the model. The interface of Design Verifier with SPERT MB is
presented in Fig.4.

Qualified Application Library (QAL)

 This module provides the commonly used set of
operators as pre-developed libraries for faster development of
application. The qualified group of library operators that
are supported by SPERTS QAL are i) logical operators,
ii) arithmetic operators, iii) selection and look-up table,
iii) trigonometric operator, iv) timer and counting operators,
v) triggers, vi) bitwise operators, vii) PID operator, and
viii) alarm processing operators.

Automatic Test Case Generator (ATG)

 This module facilitates automatic generation of test
cases for structural coverage criteria such as branch coverage
and statement coverage. The generated test suite can be
executed to determine and report the percentage of coverage
achieved with respect to the specified coverage criteria. The
generated test-cases are encoded as simulation scenarios
which are accepted by the Model Simulator module. This
scheme is shown in Fig.5.

Report Generator (RG)

 Automatic report generation is a useful feature of
SPERTS, which takes SPERTS model as input and generates a
report describing the design of the application under
development. The Report Generator (RG) creates the design
documentation in a customized format to the comply with
recommended design template as shown in Fig.6. The report is
generated as PDF or HTML document.

Conclusions

 SPERTS, the integrated development environment for
safety-critical applications is presented in this article. The
advantages of mixed mode programming using qualified
graphical function blocks as well as state machine are also

explained. The automated code generation, which guarantees
to satisfy the specified safety properties makes this tool most
suitable for Diverse Modular Safety Platform in developing
safety applications. Furthermore, automated test-case
generation facility makes this tool unique among the available
ones.

Acknowledgements

 The authors thank U. W. Vaidya, Head RCnD, S.
Mukhopadhyay, Director, E&IG, BARC and P. R. Patil, former
Head RCnD, for extending their support in this endeavour. The
authors also thank G. Karmakar for providing technical support
in writing the article.

References

[1] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The

synchronous data flow programming language LUSTRE, Proceedings

of the IEEE, Sept., 1991, 79(9), 1305-1320. doi: 10.1109/5.97300.

[2] Ansys SCADE Suite: Model-Based Development Environment

for Critical Embedded Software. https: //www.ansys.com/en-

in/products/ embedded-software/ansys-scade-suite.

[3] IEC 60880:2006, Nuclear Power Plants Instrumentation and

Control Systems Important to Safety - Software Aspects for Computer-

Based Systems Performing Category A Functions, 2006.

[4] A. Benveniste, T. Bourkey, B. Caillaud and M. Pouzet, A hybrid

synchronous language with hierarchical automata: Static typing and

translation to synchronous code. In Proceedings of the Ninth ACM

International Conference on Embedded Software (EMSOFT), Taipei,

Taiwan, 2011, 137-148. doi: 10.1145/2038642.2038664.

[5] Dariusz Biernacki, Jean-Louis Colac¸o, Gr´egoire Hamon, and

Marc Pouzet, Clock directed modular code generation for synchronous

data-flow languages, Proceedings of the 2008 ACM SIGPLAN-SIGBED

conference on Languages, compilers, and tools for embedded

systems, 2008, 121–130.

[6] Auger, C., Colaçob, J. L., Hamon, G., & Pouzet, M., A formalization

and proof of a modular Lustre compiler, 2012.

(a) (b)

Fig.6: Report Generation Module of SPERTS.

14 BARC newsletter January-February 2023

Research and Development

	Page 1
	Page 2
	Page 3
	Page 4

