Facility for the single crystals growth and characterization in SSPD, BARC

Why Crystals:

$>$ Anisotropic materials: Experiments can done along different crystallographic axes
> Subtle features can be observed only in high quality single crystals
> Neutron scattering experiments: Large single crystals

Optical Floating Zone Technique

 Advantages$>$ Reduce contamination of the melt by crucible
$>$ Oxide melting as high as 2200° C can be grown
$>$ Growth can be conducted at high pressure (up to 9.5 atm) and in specific atmosphere
>Solid solution with controlled composition can be prepared $>$ Easy to 'extract' crystals PIdeal for growth of oxides single crystals

Flow chart
Raw materials
(Mixing) \downarrow (Calcination) \downarrow (Grinding) \downarrow

> Molding
\downarrow
Sintering \downarrow
Floating zone growth

\downarrow
Single crystal
\downarrow
Characterization

Optical Floating Zone Furnace

	Specifications
Model	FZ-T-10000-H-VII-VPO-PC
Type of Lamp	Halogen
No. of Mirrors/Lamps	Four
Max Operating Temperature	$2200^{\circ} \mathrm{C}$
Lamp power	$300 \mathrm{~W}, 1000 \mathrm{~W}$, and 1500 W
ID of Quartz Tube	61.4 mm
Mirror Slow Movement	$0.01-300 \mathrm{~mm} / \mathrm{hr}$
Max Pressure	9.5 bar
Max Vacuum	(For growing materials with higher vapor pressures)
Max Temperature	$5 \times 10^{-5} \mathrm{Torr} \quad\left(6.7 \times 10^{-3} \mathrm{~Pa}\right)$
Max Crystal Growth Length	$2200^{\circ} \mathrm{C}$
Growth rate	150 mm
Max Crystal Growth Length	$0.1-30 \mathrm{~mm} / \mathrm{hr}$
Sample Chamber can be filled with inert, reductive, oxidizing atmospheres	

Cold Isostatic Press Vertical Furnace with

4 Mirror Optical Furnace

Crystal Growth (1)
LiCoO_{2} : Cathode material for Li-ion battery

A. Jain, A. Mohan, and S. M. Yusuf, J. Cryst. Growth 536, 125578 (2020).

